什么是梅森素数,什么是梅森素数?为什么要探索梅森素数??-003399威尼斯
1、什么是梅森素数
梅森素数是由梅森数而来。所谓梅森数,是指形如2p-1的一类数,其中指数p是素数,常记为mp 。如果梅森数是素数,就称为梅森素数。用因式分解法可以证明,若2n-1是素数,则指数n也是素数;反之,当n是素数时,2n-1(即mp)却未必是素数。前几个较小的梅森数大都是素数,然而梅森数越大,梅森素数也就越难出现。
2、什么是梅森素数?为什么要探索梅森素数??
梅森素数是由梅森数而来。所谓梅森数,是指形如2ⁿ-1的一类数,其中指数n是素数,常记为mn ,如果梅森数是素数,就称为梅森素数。用因式分解法可以证明,若2ⁿ-1是素数,则指数n也是素数。“梅森素数”(mersenne prime)是指形如2^p-1的素数,如2^2-1=
3、2^3-1=
7、2^5-1=31等。早在2300年前,古希腊数学家欧几里得用反证法证明素数有无穷多个;他认为,其中一些素数可写成2^p-1的形式。由于2^p-1型素数具有独特的性质和无穷的魅力,千百年来一直吸引着众多的数学家和无数的业余数学爱好者对它进行探究。17 世纪法国数学家马林·梅森是他们中最杰出的探究者。 由于梅森学识渊博、才华横溢、为人热情以及最早系统而深入地研究2^p-1型素数,为了纪念他,数学界将这种特殊形式的素数命名为“梅森素数”。迄今为止,人类仅发现51个梅森素数。这种素数珍奇而迷人,因而被人们称为“数学宝山上的钻石”。梅森素数历来是数论研究的一项重要内容,也是当今科学探索的热点和难点之一。 2^p-1貌似简单,但探究难度却很大;当指数p值较大时,不仅需要高深的理论和纯熟的技巧,而且还需要进行艰巨的计算。1772年,有“数学英雄”美名的瑞士数学大师莱昂哈德·欧拉在双目失明的情况下,靠心算证明了2^31-1(即2147483647)是第8个梅森素数。这个具有10位的素数,堪称当时世界上已知的最大素数。 在“手算笔录”的年代,人们历尽艰辛,仅找到12个梅森素数。而计算机的产生加速了梅森素数探究进程。1952年,美国数学家拉斐尔·鲁滨逊等人使用swac型计算机在短短的几个月内,就找到了5个梅森素数:2^521-
1、2^607-
1、2^1279-
1、2^2203-1和2^2281-1。 探索梅森素数的原因它促进了分布式计算技术的发展。从最新的17个梅森素数是在因特网项目中发现这一事实,可以想象到网络的威力。分布式计算技术使得用大量个人计算机去做本来要用超级计算机才能完成的项目成为可能,这是一个前景非常广阔的领域,它的探究还推动了快速傅立叶变换的应用。梅森素数在实用领域也有用武之地,现在人们已将大素数用于现代密码设计领域。其原理是:将一个很大的数分解成若干素数的乘积非常困难,但将几个素数相乘却相对容易得多,在这种密码设计中,需要使用较大的素数,素数越大,密码被破译的可能性就越小。
3、梅森素数是什么?
梅森素数是由梅森数而来。所谓梅森数,是指形如2p-1的一类数,其中指数p是素数,常记为mp 。如果梅森数是素数,就称为梅森素数。用因式分解法可以证明,若2n-1是素数,则指数n也是素数;反之,当n是素数时,2n-1(即mp)却未必是素数。前几个较小的梅森数大都是素数,然而梅森数越大,梅森素数也就越难出现。
4、梅森素数周氏定理?
周氏猜测是中国数学家及语言学家周海中于1992年在《梅森素数的分布规律》一文中提出的猜测。它被国际上命名为“周氏猜测”。周氏猜测是以精确表达式提出,而且颇具数学美。这一猜测至今未被证明或反证,已成了著名的数学难题。
5、什么事是梅森素数?
梅森素数是由梅森数而来。 所谓梅森数,是指形如2p-1的一类数,其中指数p是素数,常记为mp 。如果梅森数是素数,就称为梅森素数。 用因式分解法可以证明,若2n-1是素数,则指数n也是素数;反之,当n是素数时,2n-1(即mp)却未必是素数。前几个较小的梅森数大都是素数,然而梅森数越大,梅森素数也就越难出现。